miércoles, 27 de julio de 2011

Introduccion

En química, se llama moléculas a las partículas neutras formadas por un conjunto estable de, al menos, dos átomos enlazados covalentemente.
Casi toda la química orgánica y buena parte de la química inorgánica se ocupan de la síntesis y reactividad de moléculas y compuestos moleculares. La química física y, especialmente, la química cuántica también estudian, cuantitativamente, en su caso, las propiedades y reactividad de las moléculas. La bioquímica está íntimamente relacionada con la biología molecular, ya que ambas estudian a los seres vivos a nivel molecular. El estudio de las interacciones específicas entre moléculas, incluyendo el reconocimiento molecular es el campo de estudio de la química supramolecular. Estas fuerzas explican las propiedades físicas como la solubilidad o el punto de ebullición de un compuesto molecular.
Las moléculas rara vez se encuentran sin interacción entre ellas, salvo en gases enrarecidos. Así, pueden encontrarse en redes cristalinas, como el caso de las moléculas de H2O en el hielo o con interacciones intensas pero que cambian rápidamente de direccionalidad, como en el agua líquida. En orden creciente de intensidad, las fuerzas intermoleculares más relevantes son: las fuerzas de Van der Waals y los puentes de hidrógeno. La dinámica molecular es un método de simulación por computadora que utiliza estas fuerzas para tratar de explicar las propiedades de las moléculas

martes, 26 de julio de 2011

Objetivos

El objetivo de este temas  es mostrar cuanto amplio es la quimica y ver como es el pequeño mundo de la quimica y conocer mas acerca de esto que nos rodea hay saber mas y conocer mejor nuestro entorno ya que la quimica esta presente en todo

lunes, 25 de julio de 2011

F.Teorico

Compuestos químicos de la vida

Toda la materia viva está compuesta por :
Para entender la vida tal como la conocemos, primero debemos entender un poco de química orgánica. Las moléculas orgánicas contienen carbono e hidrógeno básicamente. Mientras que muchos químicos orgánicos también contienen otros elementos, es la unión del carbono - hidrógeno lo que los define como orgánicos.
Algunas de esta moléculas, como los hidratos de carbono, las proteínas y los ácidos nucleicos pueden ser poliméricas. Se denomina polímero a toda macromolécula constituida por la unión de muchas moléculas pequeñas similares, las que reciben el nombre de monómeros. Cuando dos monómeros similares se unen forman un dímero, si son tres un trímero. Hasta diez se lo nombran genéricamente oligómero.

Estructura atómica

Cada elemento químico está constituido por unidades más pequeñas denominadas átomos. Cada átomo está formado por un núcleo central y 1 o más capas de electrones. Dentro del núcleo residen partículas subatómicas: protones (de carga positiva) y neutrones (partículas del mismo peso, pero sin carga).
El número de protones del núcleo es característico de cada elemento y es llamado número atómico, Ej: Hidrógeno: 1, Carbono: 6, Fósforo : 15. Sin embargo, diferentes átomos de un mismo elemento pueden tener distinto número de neutrones en el núcleo, llamándose isótopos.
Los electrones giran alrededor del núcleo en regiones del espacio denominadas órbitas, los átomos grandes albergan a varias órbitas o capas de electrones, el orbital más externo se llama la capa de valencia, porque determina cuantos enlaces puede formar un átomo. Debido a su repulsión mutua, solo un determinado número de electrones puede ocupar el espacio cercano al núcleo, la capa más cercana solo puede tener dos electrones, la segunda capa puede tener hasta 8 e- en varios orbitales.
Así como los átomos son las menores partículas de un elemento, una molécula es la menor partícula de un compuesto; consta de dos o más átomos, iguales o diferentes, que se mantienen unidos mediante las interacciones o enlaces de los electrones de las capas mas externas. Los principios básicos de la reactividad atómica .

Enlaces iónicos 

En este enlace uno de los átomos toma un electrón de la capa de valencia del otro, quedando el primero con carga negativa por el electrón adicional y el segundo con carga positiva al perderlo; el enlace se debe a una ley de la física ampliamente conocida: los polos opuestos se atraen. Cuando un átomo o molécula tiene carga eléctrica se le conoce como ión, de aquí el nombre.
Por ejemplo un átomo de  Cloro al aceptar 1 e- del Sodio queda cargado negativamente, forma el ión Cloruro Cl-, (anión) mientras que el Sodio queda con un electrón menos y forma el catión Na+ (cargado positivamente). Los iones cargados de manera opuesta se atraen entre ellos a través de fuerzas electroestáticas que son la base del enlace iónico, en el ejemplo anterior la sustancia resultante es el Cloruro de Sodio ClNa (sal común).

Enlaces Covalentes

El segundo tipo de enlace atómico ocurre cuando los átomos comparten electrones. Al contrario de los enlaces iónicos en los cuales ocurre una transferencia completa de electrones, el enlace covalente ocurre cuando dos (o más) elementos comparten electrones. Esto ocurre comúnmente cuando dos no metales se enlazan. Ya que ninguno de los elementos que participan en el enlace querrán ganar electrones, estos elementos compartirán electrones para poder llenar sus envolturas de valencia. 
La distribución de e- compartidos y no compartidos es lo que determina la estructura tridimensional de las moléculas
Un buen ejemplo de un enlace covalente es el que ocurre entre dos átomos de hidrógeno. Los átomos de hidrógeno (H) tienen un electrón de valencia en su primera capa. Puesto que la capacidad máxima de esta capa es de dos electrones, cada átomo  de hidrógeno "querrá" tomar un segundo electrón. En un esfuerzo por conseguir un segundo electrón, el átomo de hidrógeno reaccionará con átomos H vecinos para formar el compuesto H2. De esta manera, ambos átomos comparten la estabilidad de una envoltura de valencia. Lo mismo ocurre con el oxígeno, solo que tiene un enlace doble, con 2 enlaces covalentes.

Enlaces Polares y No-Polares

En realidad, hay dos sub-tipos de enlaces covalentes. La molécula H2 es un buen ejemplo del primer tipo de enlace covalente: el enlace no polar. Ya que ambos átomos en la molécula H2  tienen una igual atracción (o afinidad) hacia los electrones, los electrones que se enlazan son igualmente compartidos por los dos átomos, y se forma un enlace covalente no polar.  Siempre que dos átomos del mismo elemento se enlazan, se forma un enlace no polar . Los enlaces O-O y C-H son no polares.
Los enlaces covalentes son muy fuertes y su estabilidad poco se afecta por la presencia de solventes. Un ejemplo típico de enlace covalente es el enlace Carbono-Carbono que se presenta en gran número de compuestos orgánicos.
En la práctica, los orbitales compartidos no se encuentran repartidos de manera equivalente, ya que los átomos más electronegativos tienden a mantener a los electrones en su cercanía y, por lo tanto, el orbital molecular de enlace presenta mayor volumen en la vecindad del átomo electronegativo. Los enlaces covalentes en los que ambos átomos participantes poseen una electronegatividad semejante (como en los enlaces C-C), no presentan diferencias en la carga electrónica a lo largo de la molécula, por tanto su carga eléctrica es también uniforme y se dice que no poseen polaridad.
Un enlace polar se forma cuando los electrones son desigualmente compartidos entre dos átomos, o difieren en su electronegatividad (poder del átomo en una molécula para atraer electrones). Los enlaces covalentes polares ocurren porque un átomo tiene una mayor afinidad hacia los electrones que el otro (sin embargo, no tanta como para empujar completamente los electrones y formar un ión). En un enlace polar  los electrones que se enlazan pasarán un mayor tiempo alrededor del átomo que tiene la mayor afinidad hacia los electrones. Un buen ejemplo del enlace polar covalente es el enlace H-O en la molécula de agua. 
Sin embargo, en muchos casos el enlace covalente se forma entre átomos de distinta electronegatividad y en consecuencia los electrones se agrupan más cerca de aquel átomo electronegativo, como consecuencia un lado de la molécula es electrodeficiente (posee carga parcial positiva) y el otro es electrodenso (posee carga parcial negativa). Este tipo de enlaces se designan como enlaces covalentes polares y las moléculas con este desbalance de cargas se designan como dipolares.
Las moléculas de agua contienen dos átomos de hidrógeno (dibujados en rojo) enlazados a un átomo de oxígeno (en azul). El oxígeno, con seis electrones de valencia, necesita dos electrones adicionales para completar su envoltura de valencia. Cada hidrógeno contiene un electrón. Por consiguiente el oxígeno comparte los electrones de dos átomos de hidrógeno para completar su propia envoltura de valencia, y en cambio, comparte dos de sus propios electrones con cada hidrógeno, completando la envoltura de valencia H.

Puentes Hidrógeno

La presencia de cargas parciales sobre los átomos de oxígeno e hidrógeno de la molécula del agua hace posible que entre ellas mismas se formen enlaces débiles debido a la atracción electrostática, llamados puentes de hidrógeno. Dada la estructura de la molécula de agua, se pueden formar hasta 4 puentes de H, dos a través del átomo de Oxígeno y uno por cada átomo de Hidrógeno.
Son interacciones polares y su intensidad es cerca de 5-10% de enlace covalente. En el enlace por puente de hidrógeno los tipos más importantes de fuerzas de atracción son débiles y estos enlaces son los causantes de que el agua sea un líquido a temperatura ambiente en lugar de un gas. Donde existe un hidrógeno unido a un elemento fuertemente electronegativo se establece una unión intermolecular, precisamente entre el H de una molécula y el elemento fuertemente negativo de la otra.
Este enlace se puede establecer además entre el agua y cualquier otra molécula. Si el puente se establece entre dos moléculas diferentes ya sea de la misma o de diferente especie se le denomina enlace intermolecular, por ejemplo la molécula de agua, el ácido fluorhídrico etc.
Si el puente se estable entre dos elementos electronegativos de una misma molécula, el enlace se llama intramolecular, por ejemplo O- hidroxibenzaldehido, O- clorofenol etc.

sábado, 23 de julio de 2011

Conclusiones

Llegamos a la con clusion que el mundo de la quimica es muy amplio es importante saber los conocimientos de quimica hasta el nivel mas alto creo que es importante esta materia ya que nos rodea en cada cosa que tenemos como el agua y las cosas naturales que nos rodea hay muchos mas contenidos como los enlaces y las diferentes de las leyes que se veran mas adelante es bueno conocer nuestro planeta de forma detallada y concreta